Mercury's Corrected Effective Temperature is Te.correct.mercury = 364 Κ
To calculate Mercury's Corrected Effective Temperature we should use the following data values
Mercury's (semi-major axis) - the average distance from the sun is
R = 0,387AU.
The solar irradiation on Mercury is
(1/R)² = (1AU/0,387AU)² = 2,584² = 6,6769 times stronger than that on Earth.
Mercury’s average surface albedo is:
amercury = 0,068
Mercury is a smooth surface planet, Mercury’s surface irradiation accepting factor:
Φmercury = 0,47
σ = 5,67*10⁻⁸ W/m²K⁴, the Stefan-Boltzmann constant
So = 1.361 W/m² the Solar constant
Mercury’s Corrected Effective Temperature Equation is:
Te.correct.mercury = [ Φ (1-a) So (1/R²) /4σ ]¹∕ ⁴
Te.correct.mercury = [ 0,47 (1-0,068) 1.361 W/m²*6,6769 /4*5,67*10⁻⁸ W/m²K⁴ ]¹∕ ⁴ =
Te.correct.mercury = [ 0,47 (0,932) 1.361 W/m²*6,6769 /4*5,67*10⁻⁸ W/m²K⁴ ]¹∕ ⁴ =
= (17.563.970.519,89)¹∕ ⁴ = 363,94 K = 364 K
Te.correct.mercury = 364 K
.